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ABSTRACT
We demonstrate that no empirical evidence supports long-held
beliefs related to code velocity. The best-known pragmatic way to
increase code velocity is to periodically nudge engineers to unblock
the code review process. The industry needs to revisit the Modern
Code Review process in light of the availability of various tools
and techniques that analyze and prevalidate the proposed code
changes. The code review bots are coming.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—code
inspection, code review ; D.2.8 [Software Engineering]: Metrics—
time-to-first-response, time-to-accept, time-to-merge.

Keywords
Developer productivity, code velocity, code review.

1. CONTEXT
The first part of this short column summarizes the author’s doctoral
dissertation, published in October 2023 [12]. The second part of
this opinion piece intends to trigger a discussion about the future
of code reviews in an era when code velocity matters more than
ever, and various bots have become active participants in the
software development process.

2. INTRODUCTION
One possible definition of code velocity is “the time between making
a code change and shipping the change to customers” [15]. The
cadence and process of “shipping” (releasing software to customers)
are highly variable and depend on different factors. Some of these
factors are the type of industry, the project, and the software’s
closed-source versus open-source nature.

This paper focuses on a common activity during the development
cycle regardless of how the software is shipped—the code review
process and its duration. We use the following three terms to
describe the various stages of a code review: time-to-first-response,
time-to-accept, and time-to-merge.

• Time-to-first-response [4, 13] is the period between when
the engineer publishes the code changes for review until the
first code review-related activity (e.g., acceptance, comment,
rejection) from another human who is not the author of the
changes.

∗The dissertation’s contents, which serve as the basis of this arti-
cle, and the article itself were written before Gunnar Kudrjavets
became an employee of Amazon.com, Inc. All opinions and state-
ments communicated in this paper are the author’s own.

• Time-to-accept [4] is the period between when the engineer
publishes the code changes for review until the necessary
quorum of human reviewers agrees that the changes are ready
to be merged into their destination branch.

• Time-to-merge [10]: “. . . the time since the proposal of a
change (. . . ) to the merging in the code base . . . ” [9].

Our goal is to investigate what factors influence those periods,
how we can shorten them, and what types of beliefs about code
velocity are prevalent in the larger developer community.

3. BACKGROUND AND MOTIVATION
Empirical software engineering researchers have extensively stud-
ied the Modern Code Review process [1, 16, 3, 2]. Academic
researchers are free to investigate different aspects of the code
review process. However, for a practitioner, only a few aspects
practically matter.

Based on the author’s empirical experiences and observations, a
practitioner in the software industry is primarily interested in the
following data points:

1. “Will someone react to my code review, and will there be
a meaningful engagement?” That is the case mainly for
open-source software developers. Nobody is obligated to pay
attention to the proposed code changes in the open-source
software ecosystem. In the industry, someone is responsible
for reviewing proposed code changes, so eventual engagement
is assumed.

2. “When will a first response to my code review manifest?”
A delayed response is rarely beneficial to the code author,
reviewers, or the project. Earlier feedback enables engineers
to iterate faster and work on code changes until they meet a
particular project’s requirements.

3. “When will my code review be accepted?” Acceptance is a
significant step towards propagating the code changes to their
destination. Once the changes are accepted, then in most
cases, the next steps include resolving the merge conflicts and
working through whatever issues the Continuous Integration
and Continuous Delivery/Deployment pipelines will surface.

4. “When will my code review be merged into a destination
branch?” The moment the code changes are committed to
a destination branch is when they finally “become real” for
other engineers and the project.
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In the industry, code velocity is critical because the success of
a company and individual engineers depends on their ability to
deliver results within a given timeframe. If engineers do not
complete the code reviews promptly, they cannot deploy the code
changes on time, and therefore, the fixes for defects or features
will not reach customers on time.

The primary motivation behind current research was the author’s
daily feeling of cognitive dissonance between the informal guidance
to engineers, the existing beliefs related to code velocity, industry
practices, and the observed reality. The following widely held
beliefs motivated different research papers that served as the basis
of the author’s dissertation:

1. “As the size of the projects increases, the code reviews become
slower.” We show in the answer to RQ2 that the opposite is
true.

2. “If an engineer publishes small code changes for review then
they will be accepted and merged faster.” We show in the
answer to RQ3 that there is no evidence to support this
claim.

3. “The code reviews for kernel code take less time because
most authors and contributors are very senior, so there are
less iterations during code reviews.” We show in the answer
to RQ5 that at least based on publicly accessible data from
FreeBSD code reviews the opposite it true.

4. “It is worth fixing all the compiler warnings even if it reduces
code velocity because that increase software quality?” We
show in the answer to RQ6 that somewhat surprisingly there
is no scientific evidence showing the meaningful relationship
between post-release defects and the compiler warnings.

4. RESEARCH QUESTIONS
Author’s dissertation poses the following research questions:

1. RQ1: “Is there publicly accessible high-granularity code
review data?”

2. RQ2: “What is the trend of code velocity across various
software projects?”

3. RQ3: “Does the size of code changes correlate to the duration
of various code review phases?”

4. RQ4: “What phases of the code review process are inefficient,
and what can we improve?”

5. RQ5: “Does the code velocity differ between kernel and
non-kernel code?”

6. RQ6: “Should we delete dead code and stop fixing compiler
warnings?”

7. RQ7: “What are the beliefs, practices, and convictions related
to code velocity?”

5. METHOD
To answer these questions we use mainly quantitative methods.
The empirical method for RQ1–RQ5 is exploratory case study. For
RQ6 we use a combination of ethnography and literature review.
For RQ7 we employ survey research and content analysis as a main
vehicle behind the qualitative research.

6. FINDINGS AND RESULTS
RQ1. A variety of open-source code collaboration tools exist. The
most popular ones are Gerrit, GitHub, and Phabricator. We find
that GitHub uses the formal code review process for only a subset
of projects and the usage is inconsistent. One of the drawbacks of
Gerrit is that Gerrit does not distinguish between time-to-accept
and time-to-merge. Phabricator is the only tool that exposes
high-granularity data about various events that occur during the
code review. We use the existing data mining tools to publish a
set of Phabricator code reviews as a queryable relational database.

RQ2. Based on our dataset of 283,235 code reviews we investigate
the trend for code velocity in Blender, FreeBSD, LLVM, and
Mozilla. On average, our dataset covers seven years of development
history. Our critical finding is that code velocity does not decrease
over time. The code velocity either stays the same or slightly
increases. This fact is both surprising and positive because the
size of the code bases for these projects increases on a median
between 3–17% annually.

RQ3. We investigate if there is a correlation between the pull
request size and time-to-merge. Our data source is 100 GitHub
projects that are under active development. We find no relationship
between the pull request size and time-to-merge. The results
are the same for the code reviews conducted using Gerrit and
Phabricator. For Gerrit and Phabricator we show that there is no
correlation between code review size and time-to-accept.

RQ4. We investigate the presence of non-productive time in Gerrit
and Phabricator code reviews. We quantify what happens with the
code reviews when they are accepted and ready to be merged. Our
findings show that in more than half of the cases there is no activity
between time-to-accept and time-to-merge. Enabling automatic
merging of changes for Phabricator projects has a potential to
increase code velocity by 29–63%.

RQ5. We study four BSD family operating systems: DragonFly-
BSD, FreeBSD, NetBSD, and OpenBSD. Our intent is to research
the differences in the kernel and non-kernel code for commit sizes,
commit taxonomy, and code velocity. We find that engineers
change either kernel or non-kernel code, but rarely both categories
at the same time. We discover that in FreeBSD the code velocity
for kernel code is slower than for non-kernel code.

RQ6. We find surprisingly that there is no existing evidence that
shows either the correlation or causal relationship between fixing
compiler warnings and reduction in post-release defect density. In
addition, we discover that industry lacks metrics to quantify the
benefits of deleting dead code.

RQ7. We surveyed the wider developer community about the
beliefs and practices related to code velocity. Our analysis is based
on 75 completed surveys with 39 responses from the industry
and 36 responses from the open-source software community. We
find that the majority of beliefs and trade-offs in both of these
ecosystems are similar. For the engineers in the industry, it is
obvious that decreasing code velocity is not good for anyone’s
career progression. However, it is not clear that investment into
increasing code velocity results in career growth. Out of potential
solutions to increase code velocity, a selective application of the
commit-then-review model scored the highest. On a positive note
we find that 100% of open-source and 82% of industry developers
are unwilling to compromise on software security to increase code
velocity.



Pr
ep
rin
t

7. DISCUSSION
7.1 A limited number of contrarian views
The popularization of code reviews in the industry started with
Fagan’s seminal paper on code inspections [8]. Even more than
half a century later, very few researchers have questioned the
effectiveness of the code review process. While the Modern Code
Review process does not require engineers to conduct formal review
meetings and assign official roles to participants in the review
process, little else has changed.

One of the rare papers that questions the widely accepted beliefs
about the benefits and established code review process comes from
Microsoft [7]. The paper states that “code reviews often do not
find functionality issues that should block a code submission” and
“that effective code reviews should be performed by people with
specific set of skills.” These claims match the developer folklore
and author’s experience with industry and open-source projects.

This critique from industry illustrates another problem with em-
pirical software engineering research—the different values and
viewpoints of academics and practitioners. The view from the
trenches (of reviewing code) of a practicing software engineer is
often very different than that of a researcher [13]. The map is
not the territory [11]. Fred Brooks’s quote feels appropriate here:
“Thinkers are rare; doers are rarer; and thinker-doers are the
rarest” [5]. We need more of the doers writing papers than just
writing code to help advance the field of developer productivity.

7.2 Advancements in pre-validation toolchains
The software industry has made massive leaps in pre-release de-
fect detection. Compilers with improved error detection (e.g.,
the -fanalyzer switch in GCC), linters, static analyzers, style
validators, and various sanitizers such as ASan, TSan, and UB-
San are all available to engineers to validate their changes before
even submitting any lines of code for a review. In the industry,
engineers can typically run numerous pre-validation test cases
before the code reviews are published. As a result, automation
now discovers many defects that previously required a human to
detect. For example, various tools can effectively validate that a
function releases memory allocated when it exits because of an
obscure error condition and does not leak memory. The value
proposition that a human code reviewer can provide in 2024 is
very different from what it was even a decade ago.

7.3 Trade-offs between speed and quality
Another issue the industry should revisit is the dictum that some-
one must review all the code changes. Most software engineers do
not write code that supports interplanetary travel or manages the
daily operations of a nuclear reactor. Even in non-critical software,
there are different layers. The requirement to have mandatory code
reviews sounds reasonable in some areas where the consequences
of defects are severe—such as cryptography libraries, file systems,
or operating system kernels. Everything else? It depends.

For example, most open-source projects in the operating systems
space have separate committer and contributor roles. A committer
has historically proven to have good judgment and thus can be
trusted to make code changes with less oversight. The FreeBSD
project requires that “[a]ll non-trivial changes should be reviewed
before they are committed to the repository” [19]. A critic can
immediately reason that one engineer’s trivial change is another
engineer’s feature. A counter-argument is that if an engineer is
qualified to implement a high-performance thread pool that runs
in kernel mode, they should be trusted to make judgment calls on
who will review their code and when.

8. THREATS TO VALIDITY
The main threat to the validity of the author’s research is that all
the findings base themselves on open-source software. While open-
source software powers everything from cell phones to clusters of
supercomputers, a large amount of code produced worldwide is
closed-source. Research in empirical software engineering utilizes
code review activity of operating systems such as FreeBSD and
various Linux distributions because the relevant data is freely
available. However, we rarely see papers about the code review
process for Apple’s macOS or Microsoft’s Windows or the evolution
of code velocity in other commercial products.

The industry limits access to code bases for obvious reasons (com-
petitive advantage, patents, potential reputational damage, trade
secrets). Even if the researchers who work for a particular organi-
zation discover results useful for the wider research and software
engineering community, it is uncertain if those results can ever be
published.

Another obvious threat to validity is the author’s industrial back-
ground and the inherent biases associated with it. A “proper
academic”may look at the challenges related to code velocity from
a very different angle than a practicing software engineer whose
professional career depends on it.

9. WHAT DOES THE FUTURE LOOK LIKE?
The Roman Stoic philosopher Lucius Annaeus Seneca has highly
influenced the author’s take on the future—the future is uncer-
tain [17]. However, to spark some discussion, the author will
entertain some thoughts on how the code review process can
change in years to come.

In 2021, when the author started working on his dissertation,
ChatGPT was was yet to be launched. In 2024, in addition to
ChatGPT, a plethora of similar chatbots such as Copilot, Gemini,
and Grok have become a part of a toolset to enhance everyone’s
productivity. The term “Generative AI” has become a part of
everyday vocabulary. We even have “Devin, the first AI software
engineer” [21]. Surely, Devin will not want to wait for days for
someone (a human or a bot) to review their one character change
to convert a function call from strncpy() to strlcpy()? Devin
would like their colleague Devin′ (or an instance of it) to review
and either approve or reject the changes in seconds.

While seasoned AI researchers have differing views on whether
chatbots are just a reincarnated version of ELIZA that runs on a
cluster of GPUs or advancements in AGI, it is hard to argue that
their presence has not impacted the fabric of our everyday lives.

The author hopes that shortly (in a year or two), we see the
application of chatbots and LLMs in a way that significantly
reduces the cognitive load on software engineers. Most of the
decisions in software engineering will always be trade-offs between
the risk and various characteristics of a particular project. However,
in most software projects, there is no reason that trivial code
changes such as fixing compilation errors or updating comments
will have to wait for days or weeks for another human to approve.

An ability to have highly customizable AI-powered agents or bots
that roam in the code base and either suggest or review the code
changes will become a matter of survival in the industry. The
“found by a bot, fixed by a bot, reviewed by a bot, committed by a
bot, and deployed by a bot” sequences will become a new normal.
Likely, the software industry will go through the phase of an
equivalent of “AI doomers” predicting the imminent appearance of
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Skynet if we let bots attempt to fix the build errors while engineers
are soundly asleep.

Some of these concerns are definitely valid. We do not want an
instance of a rogue CodeReviewBot that overrides its governor
module and spends most of its time watching soap operas such as
“The Rise and Fall of Sanctuary Moon” [20]. On the other hand, if
this results in faster code reviews, the trade-off may be acceptable.

10. CALL TO ACTION
During the last 10–15 years, the majority of commercial software
companies have switched from delivering shrink-wrapped software
every N years to Continuous Integration and Continuous Deliv-
ery/Deployment. The advances in hardware have given us faster
build times, parallelized test execution, and the ability to integrate
several pre-validation toolchains into a code review process.

However, the human element is still a bottleneck in the code review
process. While the other parts of the software development life-
cycle have improved from taking years to days, there have been
few improvements to the code review process. The state-of-the-art
method to increase code velocity is nudging, i.e., annoying bots
reminding engineers to fulfill their reviewer duties on time [14, 18].
The predictive modeling in the industry is ineffective in identifying
what factors contribute to the duration of code reviews [6].

Though the peer review process in software engineering has been
in practice for half a century, it remains one of the few areas where
the software industry remains “stuck in the 70s.” The Modern
Code Review process needs more significant changes to justify
being called modern.
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