Optimizing the Compiler’'s Memory Usage?
Let Us Implement a Basic Profiler First!

Gunnar Kudrjavets Aditya Kumar Jeff Thomas
University of Groningen = ACM Distinguished Speaker Cyclist, mountaineer, skier
g.kudrjavets@rug.nl hiraditya@msn.com jeffdthomas@gmail.com

@gunnarku @_ hiraditya_ @ jeffdthomas



TL.DR

«Implementing a custom profiling solution is a
complex problem for niche products.

While solving individual subtasks can be an
exciting intellectual pursuit, implementing a
working solutions comes down to pragmatic

trade-offs.
Systems programmer’s reality is unpleasant.



https://www.usenix.org/system/files/1311_05-08_mickens.pdf

Speaker bio aka I'm not a compiler engineer

. 2000 —2015, Microsoft Corporation
. Redmond, WA, USA. Shifting bits.

. 2015 —2020, Facebook, Inc. (aka Meta Platforms, Inc.)
. Seattle, WA, USA. Shifting more bits.

. 2020 —2021, The “Eat, Pray, Love” phase of life
- Colorado, Nepal, Oregon, getting into trouble.

. 2021 —2023, Writing random research papers and
finishing the dissertation.
- Hapless PhD candidate.



Why should compiler engineers care?

« A philosophical meta question: is

optimizing compiler resource usage a niche
problem?

« Organizations and projects with large code
bases (e.q., Linux, Microsoft Windows,
Mozilla) deeply care.

« Build is never sufficiently fast.


https://www.linux.com/news/linux-in-2020-27-8-million-lines-of-code-in-the-kernel-1-3-million-in-systemd/
https://devblogs.microsoft.com/bharry/the-largest-git-repo-on-the-planet/
https://firefox-source-docs.mozilla.org/build/buildsystem/slow.html

Typical solutions

= Delete dead code - who does that?
= “Pruning and Polishing: Keeping OpenBSD Modern”
- Hardware (e.qg., buying better SDDs) can help only so much.

- Parallelization reaches its limits (OS limits, overall resource
usage per whatever container the build runs in, build rules,

etc.).

- The inevitable conclusion - the “lighter” your tools, the
better.



https://www.openbsd.org/papers/pruning.html

Problem statement we extrapolate from

Context

= A user mode process with a relatively short lifetime compared to
for example a daemon/service.

Goals
= Reduce the clock time (wall time) of specific tasks (e.g., a function).
» Understand where the amount of "work” has increased in production.

Problem

= Reliable measuring and profiling of short periods (e.g., why a
scenario that took 53 ms now takes 81 ms?) is susceptible to
Heisenberg effect (";‘the very act of measurement or observation
directly alters the phenomenon under investigation”).

Method
= Use the memory allocator churn as a proxy metrics.
= Yes, there’s also CPU usage, 1/O (disk, network, IPC/RPC/XPC).



https://dx.doi.org/10.4135/9781412961288
https://dl.acm.org/doi/10.1145/3524613.3527803

Core principles: ability to profile in production

- Map is not a territory.

- Internal test environments, build labs, dogfooding, etc. can only
provide you with an approximation of reality.

- Dogfooding data is often biased. For example, how many
FAANG employees still use an iPhone 6 or MacBook from 2015 or
are on 3G networks?

= In general, “you have no clue what people are running and how.”
« Prime example: backwards compatibility in OS.

. Design decision: whatever we do—it must be seamless.


https://www.google.com/books/edition/Science_and_Sanity/WnEVAQAAIAAJ

Core principles: no new build type required

. The build matrix for each nontrivial project is significant.
. Getting all builds passing is like a game of Whac-a-Mole.

. Platform (x64, ARM32, ARM64, ...) X build flavor (debug,
release, ship, ...) X sanitizers (ASan, TSan, UBSan, ...) X
compiler (Clang, GCC, MSVC, ...) X build environment
(Bazel, Buck, Ninja, Makefile, ...) x OS (Linux, macQOS,
Windows, ...) Xx. ..

. Design decision: we will not add to this madness.



Core principles: profiling must be on-demand

. Cool KidZ practice Continuous Profiling.

. We are not interested in “profiling everything all the
time.”

. Clearly, we cannot deploy special tools like (e.qg., BPF,
kerntrace, perf) with our product.

. Must have an ability to control profiling functionality
using feature flags depending on certain criteria.

. Cannot ask users "Hey, would you run Clang in the profile
mode for us?”



Epistemological humility in engineering

. Most problems have already been solved in some
shape or form in the past.

. Lots of lessons from other engineers floating around.

. Need to be aware of our own biases as engineers.

. For an operating systems engineer, every problem can
be solved by developing a new memory manager,
optimizing a locking scheme, or tweaking a spin-lock.

. There will be a lots of “temptations” on the way.



Sample guidance #1

"Memory management is a solved
problem. Why don’t you just rewrite
everything in OCaml and be done
with the problem forever?”



Sample guidance #2

"Just throw some ML model on it.
Talk to data science people.”



Sample guidance #3

“This is a hard problem.
You are doomed.”

(Polite version of what was said.)



Trade-off topics

. Intercepting calls to a memory allocator
. Collection of basic data and counting
. Enhancements to profiling



Using a custom memory allocator

- Why don’t we just fork off jemalloc or mimalloc or TCMalloc and
change it the way we like it?

Now we have two problems.

- A new problem is nontrivial—make everything work with a
custom allocator.

- Well, why don't you just have a custom version of libmalloc?
= Legalissues aside ...
- The reference source code is a version from some pointin
past.

- User mode allocators and OS tend to have “an
understanding” and there’s no way for us to account for
undocumented behavior.

- Any OS update can break everything.

15


https://opensource.apple.com/source/libmalloc/

Overriding the allocator: code injection

. Bad idea in general (just another exploit primitive).
. Linux: LD_PRELOAD +dlsym(RTLD NEXT, ...)

- macOS: DYLD _INSERT LIBRARIES orDYLD_ INTERPOSE
. Requires System Integrity Protection (SIP) disabled.
. New categories of problems on devices (e.g., iOS).

. Windows
- Many ways
. Closest to previous examples is Detours.



https://dl.acm.org/doi/10.5555/1268427.1268441

1d and --wrap flag (1)

No 1d support on
macOS.

Does not wrap
already compiled
code (e.g., a system
dynamic library).

void * _ wrap_malloc(size t size)

{
void *ptr = _ real _malloc(size);
// Need to avoid infinite recursion.
("malloc(%zu) = %p\n",
size, ptr);
return ptr;
}

clang ./foo.c -Wl,--wrap,malloc -Wl,--wrap,free

17



1d and --wrap flag(2)

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{

char *s = strdup("This allocation is not tracked ;-(");
puts(s);

return EXIT SUCCESS;

18



The “constructor” attribute

. Used by custom memory __attribute_ ((constructor))
allocators (e.qg., jemalloc, static void
mimalloc). init something(void)

. Several weird corner {

cases. Look at source
code of various allocators
for detailed explanations.

- "What if everyone did
that?”



Built-in interceptors (1)

- IMHO the optimal method.
- Manipulating the hooks is not thread-safe.

- The GNU C library used to have a built-in mechanism
to replace a built-in malloc implementation.

- Removed since glibc version 2.34 (August 2021).



https://www.gnu.org/software/libc/manual/html_node/Replacing-malloc.html#Replacing-malloc
https://www.gnu.org/software/libc/manual/html_node/Replacing-malloc.html#Replacing-malloc
https://developers.redhat.com/articles/2021/08/25/securing-malloc-glibc-why-malloc-hooks-had-go

Built-in interceptors (2)

. Android supports malloc hooks that are “only available
in Android P and newer versions of the OS.”

void* new_malloc_hook(size_t bytes, const void* arg) {
// Do whatever you need to do here ...
return orig malloc_hook(bytes, arg);

}

auto orig malloc _hook = malloc hook;
__malloc_hook = new malloc_hook;

21


https://android.googlesource.com/platform/bionic/+/master/libc/malloc_hooks/README.md)

Built-in interceptors (3)

static void *

« For macOS:

= malloc_logger
= syscall logge

~malloc_zone malloc {

=
. if (os_unlikely(malloc_logger)) {
- libmalloc source malloc_logger(MALLOC LOG_TYPE ALLOCATE | ... ,
: (uintptr_t)zone,
mls the (uintptr_t)size,
documentation. @, (uintptr_t)ptr, 0);
}
- NB! Manipulating
the hooks is not y

thread-safe.

22


https://opensource.apple.com/source/libmalloc/libmalloc-317.140.5/src/malloc.c.auto.html
https://opensource.apple.com/source/libmalloc/libmalloc-317.140.5/src/malloc.c.auto.html

Temptation

. We'll design and implement our own intercept
mechanism.

. Why? So, that we can intercept everything
everywhere.

. |t's like Poor Man’s Rootkit.

. Why? Because it's cool.




Countingis hard ...

E v 5 Counting
i 5.1 Why Isn't Concurrent Counting Trivial?
o 5.2 Statistical Counters
Is Parallel Programming Hard, And, 5.2.1 Design

If So, What Can You Do About It? 5.2.2 Array-Based Implementation
(First B&W Print Edition)

Paul E. McKenney

5.2.3 Per-Thread-Variable-Based Implementation
5.2.4 Eventually Consistent Implementation
5.2.5 Discussion

v 5.3 Approximate Limit Counters
5.3.1 Design
5.3.2 Simple Limit Counter Implementation
5.3.3 Simple Limit Counter Discussion
5.3.4 Approximate Limit Counter Implementation
5.3.5 Approximate Limit Counter Discussion

> 5.4 Exact Limit Counters

> 5.5 Parallel Counting Discussion
24



Start with simple solutions

- Global synchronization primitive (e.g., a mutex)

- RWL (reader-writer lock)
- Our scenario: a lots of writing, occasional reading.

. Spinlocks—meh ...

- std::atomic<T>
= First glimpse of hope.

- Temptation:

- We'll implement our own RCU (read-copy-update) and
it's going to be great!

- Eventual (obvious?) focus: TLS (thread-local storage).



TLS (thread-local storage)

- Not a magical solution.
- Something somewhere needs to implement TLS.

. Atypical implementation is lazy and uses malloc() to
maintain TLS entries.

- Guess, what happens when you callmalloc() duringthe
malloc() intercept?
» Reentrancy problems come calling.

. General problem: you should be very conscious of what you
execute during the intercept.
- What is the contract for locks, signals, triggering allocations?

26



When malloc() intercept calls malloc() ...

116
117
118
119
120
121
122
123
124
125
126
127

libdyld.dylib

a.out

libsystem malloc.dylib
dyld

libdyld.dylib

a.out

libsystem malloc.dylib
dyld

libdyld.dylib

a.out

libsystem malloc.dylib
dyld

tlv_get addr + 296
_ZL24libmalloc_intercept_funcjmmmmj + 48
_malloc_zone _malloc + 249
_ZN5dyld412RuntimeStatel6_instantiateTLVsEm + 175
tlv_get addr + 296
_ZL241ibmalloc_intercept_funcjmmmmj + 48
_malloc_zone _malloc + 249
_ZN5dyld412RuntimeStatel6 _instantiateTLVsEm + 175
tlv_get addr + 296
_ZL24libmalloc_intercept_funcjmmmmj + 48
~malloc_zone malloc + 249
_ZN5dyld412RuntimeStatel6 _instantiateTLVsEm + 175

27



Temptations

. We will write our own TLS implementation.

. Why? Because it's cool.

. Also, jemalloc team has worked on something
similar.

. Track each time a new thread is created and
destro?/ed. Do some trickery to “pre-initialize” TLS.
. Analogousto for _each_thread().
. A non-trivial problem with a highly
implementation-dependent solution.



Hacks to work around the TLS initialization

- Make a design decision that we’ll track only first N
threads.
- Use (supposed) guarantees from C++ memory model and
manually tune memory ordering.
- Some basic RCU manipulation to keep track of indices.

- Use a global data structure to manage the state.
= mach _port t mach _tid = pthread mach_thread np(pthread self());
= int idx = f(mach_tid); // 0(1) lookup
= // Play around with a[idx];

- The tracking data structure serves mainly reads, writes
only when a new thread is created.

- Track a limited number of variables, pack them, try to
avoid CPU cache ping-pong as much as possible.

29



Pseudo-algorithm

int idx = f(mach_tid); //

if (a[idx].state == UNINITIALIZED) { //

a[idx].state = IGNORE; //
} else if (a[idx].state == IGNORE) { //
return; //
}
do_something with tls variables(); //
if (a[idx].state == IGNORE) { //
al[idx].state = INITIALIZED; //

¥

0(1) magic.

(R) 15t on this thread.
(W) Ignore next calls.

(R)

Reentrant call - bail out.
Causes reentrancy.

(R)

(W)TLS access:initialized.

30



Temptation

. We'll implement a custom versions of typical dynamic data
structures (e.g., a hash table) that use a lower-level
allocation primitives to avoid the malloc() dependency.

. Why? Because we can.

. We'll implement a cool way to “avoid” locks by using
lock-free data structures.
. Why? Because we've read all those papers and books
about lock-free programming, and it sounds really cool.



Problems with the implementation

= Tooling from Apple (e.g., Xcode Instruments) uses the same mechanism to
intercept the allocations [J can’t have both run at the same time.

= Sanitizers such as AddressSanitizer (aka ASan) will have their own malloc
implementations.

= Custom allocators that manage their own arenas/heaps/zones will avoid the
system libraries. For example, mimalloc in standard configuration will use only
mmap () andmunmap().

= Restricted to libmalloc only. User can always call lower-level APIs such as
mach vm_allocate().Those can be intercepted as well.

= Tracking the real allocated size (e.g., result of
malloc size()/malloc _usable size()) is costly.

32



Sample API (based on libmalloc definitions)

typedef void(malloc logger t)

(uint32_t type, uintptr_t argl,
uintptr_t arg2, uintptr_t arg3,
uintptr_ t result, uint32 t num _hot frames to skip);

extern malloc_logger t *malloc logger;
typedef struct malloc stats t {

} malloc stats t, *pmalloc stats t;

33



Temptation

- We'll use as much futures, lambdas, and promises
as we can to implement the API.
» C++11/14/17/20/23

- Why? Because C++ now supports all kinds of cool
things. We want to use the latest standard
because it's there.

34



Sample API (usage patterns)

int
int
int
int
int
int

start malloc _trace();
stop_malloc_trace();

reset thread malloc stats();
reset global malloc stats();

get_global_malloc_stats(malloc_stats_t *global_stats);
get_thread_malloc_stats(malloc_stats_t *thread_stats);

Custom classes that use RAIl pattern on top of it to make the usage
easy.

Hide everything from the consumer.

35



More complex scenarios

- If you can’t keep everything in memory, then you need to use some
form of storage.

- Storage (typically a disk) means opening multiple cans of worms.
- Shared (circular) queues in the memory.
- Concurrent access by reader and writer threads.
- Asynchronous and synchronous I/O decisions.
- Managing the data store (e.q., cleanup, compaction, limits).
- Data corruption.
- Packaging, compressing, transmitting, and decompressing the
data.

36



Final thoughts

- Both jemalloc and”

deally, the allocator should

"CMal

- Default allocators c

on‘ts

t has been some time since we've worked on this
oroblem—take everything that was said with a grain of salt.

keep track of statistics
OC expose some.

nare much.

» glibc: struct mallinfo mallinfo(void);
» glibc: struct mallinfo2 mallinfo2(void);

- Using custom memory allocators causes an “intercept race

condition.”

- AreTLS models in LLVM something that can be used?

37



Acknowledgements

. The only reason | am here is because of the
kindness of LLVM Foundation.

38



THANKYOU - ENGINEERS NEED YOUR

HELP!

nterested? Intrigued?
Disagree? Collaborate?
ave a beer? Go for a trail run?

=gunnarku.github.io
=g.kudrjavets@rug.nl

39



Everything will be fine

"A systems programmer will know what to do
when society breaks down, because the
systems programmer already lives in a world
without law.”

— James Mickens, The Night Watch, 2013



References

= Duffy, J., & Sutter, H. (2008). Concurrent Programming on Windows. Boston, MA:
Addison-Wesley Educational.

= Herlihy, M., & Shavit, N., (2020). The Art of Multiprocessor Programming (2" ed.).
Burlington, MA, USA: Morgan Kaufmann Publishers.

= Kerrisk, M. (2010). The Linux Programming Interface. San Francisco, CA, USA: No
Starch Press.

= Levin, J. (2017). *OS internals: User space. White Plains, NY: USA: Technologeeks
Press.

= McKenney, P. E., (2014). Is Parallel Programming Hard, And, If So, What Can You Do
About It? Self-published.

= Singh, A. (2006). Mac OS X Internals. Boston, MA: Addison-Wesley Educational.

= Williams, A. (2019). C++ Concurrency in Action (2™ ed.). New York, NY, USA: \YETalsllgle!
Publications.

41



