
Optimizing the Compiler’s Memory Usage?
Let Us Implement a Basic Profiler First!

Gunnar Kudrjavets
University of Groningen

g.kudrjavets@rug.nl
@gunnarku

Aditya Kumar
ACM Distinguished Speaker

hiraditya@msn.com
@_hiraditya_

Jeff Thomas
Cyclist, mountaineer, skier
jeffdthomas@gmail.com

@ jeffdthomas

TL;DR

▪Implementing a custom profiling solution is a
complex problem for niche products.
▪While solving individual subtasks can be an
exciting intellectual pursuit, implementing a
working solutions comes down to pragmatic
trade-offs.
▪Systems programmer’s reality is unpleasant.

2

https://www.usenix.org/system/files/1311_05-08_mickens.pdf

Speaker bio aka I’m not a compiler engineer

▪ 2000 —2015, Microsoft Corporation
▪ Redmond, WA, USA. Shifting bits.

▪ 2015 —2020, Facebook, Inc. (aka Meta Platforms, Inc.)
▪ Seattle, WA, USA. Shifting more bits.

▪ 2020 —2021, The “Eat, Pray, Love” phase of life
▪ Colorado, Nepal, Oregon, getting into trouble.

▪ 2021 —2023, Writing random research papers and
finishing the dissertation.
▪ Hapless PhD candidate.

3

Why should compiler engineers care?

▪ A philosophical meta question: is
optimizing compiler resource usage a niche
problem?

▪ Organizations and projects with large code
bases (e.g., Linux, Microsoft Windows,
Mozilla) deeply care.

▪ Build is never sufficiently fast.
4

https://www.linux.com/news/linux-in-2020-27-8-million-lines-of-code-in-the-kernel-1-3-million-in-systemd/
https://devblogs.microsoft.com/bharry/the-largest-git-repo-on-the-planet/
https://firefox-source-docs.mozilla.org/build/buildsystem/slow.html

Typical solutions

▪ Delete dead code - who does that?

▪ “Pruning and Polishing: Keeping OpenBSD Modern”

▪ Hardware (e.g., buying better SDDs) can help only so much.

▪ Parallelization reaches its limits (OS limits, overall resource
usage per whatever container the build runs in, build rules,
etc.).

▪ The inevitable conclusion - the ”lighter” your tools, the
better.

5

https://www.openbsd.org/papers/pruning.html

Problem statement we extrapolate from

▪ Context
▪ A user mode process with a relatively short lifetime compared to

for example a daemon/service.
▪ Goals

▪ Reduce the clock time (wall time) of specific tasks (e.g., a function).
▪ Understand where the amount of “work” has increased in production.

▪ Problem
▪ Reliable measuring and profiling of short periods (e.g., why a

scenario that took 53 ms now takes 81 ms?) is susceptible to
Heisenberg effect (“the very act of measurement or observation
directly alters the phenomenon under investigation”).

▪ Method
▪ Use the memory allocator churn as a proxy metrics.
▪ Yes, there’s also CPU usage, I/O (disk, network, IPC/RPC/XPC).

6

https://dx.doi.org/10.4135/9781412961288
https://dl.acm.org/doi/10.1145/3524613.3527803

Core principles: ability to profile in production

▪ Map is not a territory.

▪ Internal test environments, build labs, dogfooding, etc. can only
provide you with an approximation of reality.

▪ Dogfooding data is often biased. For example, how many
FAANG employees still use an iPhone 6 or MacBook from 2015 or
are on 3G networks?

▪ In general, “you have no clue what people are running and how.”
▪ Prime example: backwards compatibility in OS.

▪ Design decision: whatever we do—it must be seamless.

7

https://www.google.com/books/edition/Science_and_Sanity/WnEVAQAAIAAJ

Core principles: no new build type required

▪ The build matrix for each nontrivial project is significant.
▪ Getting all builds passing is like a game of Whac-a-Mole.
▪ Platform (x64, ARM32, ARM64, ...) ⅹ build flavor (debug,

release, ship, ...) ⅹ sanitizers (ASan, TSan, UBSan, ...) ⅹ
compiler (Clang, GCC, MSVC, ...) ⅹ build environment
(Bazel, Buck, Ninja, Makefile, ...) x OS (Linux, macOS,
Windows, ...) x . . .

▪ Design decision: we will not add to this madness.

8

Core principles: profiling must be on-demand

▪ Cool KidZ practice Continuous Profiling.
▪ We are not interested in “profiling everything all the

time.”
▪ Clearly, we cannot deploy special tools like (e.g., BPF,

kerntrace, perf) with our product.
▪ Must have an ability to control profiling functionality

using feature flags depending on certain criteria.
▪ Cannot ask users “Hey, would you run Clang in the profile

mode for us?”

9

Epistemological humility in engineering

▪ Most problems have already been solved in some
shape or form in the past.

▪ Lots of lessons from other engineers floating around.
▪ Need to be aware of our own biases as engineers.

▪ For an operating systems engineer, every problem can
be solved by developing a new memory manager,
optimizing a locking scheme, or tweaking a spin-lock.

▪ There will be a lots of “temptations” on the way.

10

Sample guidance #1

“Memory management is a solved
problem. Why don’t you just rewrite

everything in OCaml and be done
with the problem forever?”

11

Sample guidance #2

“Just throw some ML model on it.
Talk to data science people.”

12

Sample guidance #3

“This is a hard problem.
You are doomed.”

(Polite version of what was said.)

13

Trade-off topics

▪ Intercepting calls to a memory allocator
▪ Collection of basic data and counting
▪ Enhancements to profiling

14

Using a custom memory allocator

▪ Why don’t we just fork off jemalloc or mimalloc or TCMalloc and
change it the way we like it?
▪ Now we have two problems.
▪ A new problem is nontrivial—make everything work with a

custom allocator.
▪ Well, why don’t you just have a custom version of libmalloc?
▪ Legal issues aside ...
▪ The reference source code is a version from some point in

past.
▪ User mode allocators and OS tend to have ”an

understanding” and there’s no way for us to account for
undocumented behavior.

▪ Any OS update can break everything.

15

https://opensource.apple.com/source/libmalloc/

Overriding the allocator: code injection

▪ Bad idea in general (just another exploit primitive).
▪ Linux: LD_PRELOAD + dlsym(RTLD_NEXT, …)

▪ macOS: DYLD_INSERT_LIBRARIES or DYLD_INTERPOSE
▪ Requires System Integrity Protection (SIP) disabled.
▪ New categories of problems on devices (e.g., iOS).

▪ Windows
▪ Many ways
▪ Closest to previous examples is Detours.

16

https://dl.acm.org/doi/10.5555/1268427.1268441

ld and --wrap flag (1)

▪ No ld support on
macOS.

▪ Does not wrap
already compiled
code (e.g., a system
dynamic library).

17

void *__wrap_malloc(size_t size)
{
 void *ptr = __real_malloc(size);

 // Need to avoid infinite recursion.
 nomalloc_printf("malloc(%zu) = %p\n",

 size, ptr);
 return ptr;
}

clang ./foo.c -Wl,--wrap,malloc -Wl,--wrap,free

ld and --wrap flag (2)

18

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

int main(int argc, char *argv[])

{

 char *s = strdup("This allocation is not tracked ;-(");

 puts(s);

 return EXIT_SUCCESS;

}

The “constructor” attribute

▪ Used by custom memory
allocators (e.g., jemalloc,
mimalloc).

▪ Several weird corner
cases. Look at source
code of various allocators
for detailed explanations.

▪ “What if everyone did
that?”

19

__attribute__((constructor))

static void

init_something(void)

{

 . . .

}

Built-in interceptors (1)

▪ IMHO the optimal method.
▪ Manipulating the hooks is not thread-safe.
▪ The GNU C library used to have a built-in mechanism

to replace a built-in malloc implementation.
▪ Removed since glibc version 2.34 (August 2021).

20

https://www.gnu.org/software/libc/manual/html_node/Replacing-malloc.html#Replacing-malloc
https://www.gnu.org/software/libc/manual/html_node/Replacing-malloc.html#Replacing-malloc
https://developers.redhat.com/articles/2021/08/25/securing-malloc-glibc-why-malloc-hooks-had-go

Built-in interceptors (2)

▪ Android supports malloc hooks that are “only available
in Android P and newer versions of the OS.”

21

void* new_malloc_hook(size_t bytes, const void* arg) {
 // Do whatever you need to do here ...
 return orig_malloc_hook(bytes, arg);
}

auto orig_malloc_hook = __malloc_hook;
__malloc_hook = new_malloc_hook;

https://android.googlesource.com/platform/bionic/+/master/libc/malloc_hooks/README.md)

Built-in interceptors (3)

▪ For macOS:
▪ malloc_logger
▪ __syscall_logge
r

▪ libmalloc source
code is the
documentation.

▪ NB! Manipulating
the hooks is not
thread-safe.

22

static void *

_malloc_zone_malloc {

 . . .

 if (os_unlikely(malloc_logger)) {
 malloc_logger(MALLOC_LOG_TYPE_ALLOCATE | ... ,
 (uintptr_t)zone,
 (uintptr_t)size,
 0, (uintptr_t)ptr, 0);
 }

 . . .
}

https://opensource.apple.com/source/libmalloc/libmalloc-317.140.5/src/malloc.c.auto.html
https://opensource.apple.com/source/libmalloc/libmalloc-317.140.5/src/malloc.c.auto.html

Temptation

▪ We’ll design and implement our own intercept
mechanism.

▪ Why? So, that we can intercept everything
everywhere.

▪ It’s like Poor Man’s Rootkit.
▪ Why? Because it’s cool.

23

Counting is hard ...

24

Start with simple solutions

▪ Global synchronization primitive (e.g., a mutex)
▪ RWL (reader-writer lock)

▪ Our scenario: a lots of writing, occasional reading.
▪ Spinlocks—meh ...
▪ std::atomic<T>

▪ First glimpse of hope.
▪ Temptation:

▪ We’ll implement our own RCU (read-copy-update) and
it’s going to be great!

▪ Eventual (obvious?) focus: TLS (thread-local storage).
25

TLS (thread-local storage)

▪ Not a magical solution.
▪ Something somewhere needs to implement TLS.
▪ A typical implementation is lazy and uses malloc() to

maintain TLS entries.
▪ Guess, what happens when you call malloc() during the
malloc() intercept?
▪ Reentrancy problems come calling.

▪ General problem: you should be very conscious of what you
execute during the intercept.
▪ What is the contract for locks, signals, triggering allocations?

26

When malloc() intercept calls malloc() ...

...

116 libdyld.dylib tlv_get_addr + 296

117 a.out _ZL24libmalloc_intercept_funcjmmmmj + 48

118 libsystem_malloc.dylib _malloc_zone_malloc + 249

119 dyld _ZN5dyld412RuntimeState16_instantiateTLVsEm + 175

120 libdyld.dylib tlv_get_addr + 296

121 a.out _ZL24libmalloc_intercept_funcjmmmmj + 48

122 libsystem_malloc.dylib _malloc_zone_malloc + 249

123 dyld _ZN5dyld412RuntimeState16_instantiateTLVsEm + 175

124 libdyld.dylib tlv_get_addr + 296

125 a.out _ZL24libmalloc_intercept_funcjmmmmj + 48

126 libsystem_malloc.dylib _malloc_zone_malloc + 249

127 dyld _ZN5dyld412RuntimeState16_instantiateTLVsEm + 175

27

Temptations

▪ We will write our own TLS implementation.
▪ Why? Because it’s cool.

▪ Also, jemalloc team has worked on something
similar.

▪ Track each time a new thread is created and
destroyed. Do some trickery to “pre-initialize” TLS.
▪ Analogous to for_each_thread().
▪ A non-trivial problem with a highly

implementation-dependent solution.

28

Hacks to work around the TLS initialization

▪ Make a design decision that we’ll track only first N
threads.
▪ Use (supposed) guarantees from C++ memory model and

manually tune memory ordering.
▪ Some basic RCU manipulation to keep track of indices.

▪ Use a global data structure to manage the state.
▪ mach_port_t mach_tid = pthread_mach_thread_np(pthread_self());
▪ int idx = f(mach_tid); // O(1) lookup
▪ // Play around with a[idx];

▪ The tracking data structure serves mainly reads, writes
only when a new thread is created.

▪ Track a limited number of variables, pack them, try to
avoid CPU cache ping-pong as much as possible.

29

Pseudo-algorithm

int idx = f(mach_tid); // O(1) magic.

if (a[idx].state == UNINITIALIZED) { // (R) 1st on this thread.
 a[idx].state = IGNORE; // (W) Ignore next calls.

} else if (a[idx].state == IGNORE) { // (R)
 return; // Reentrant call – bail out.
}

do_something_with_tls_variables(); // Causes reentrancy.

if (a[idx].state == IGNORE) { // (R)
 a[idx].state = INITIALIZED; // (W)TLS access:initialized.
}

30

Temptation

▪ We’ll implement a custom versions of typical dynamic data
structures (e.g., a hash table) that use a lower-level
allocation primitives to avoid the malloc() dependency.
▪ Why? Because we can.

▪ We’ll implement a cool way to “avoid” locks by using
lock-free data structures.
▪ Why? Because we’ve read all those papers and books

about lock-free programming, and it sounds really cool.

31

Problems with the implementation

▪ Tooling from Apple (e.g., Xcode Instruments) uses the same mechanism to
intercept the allocations 🡪 can’t have both run at the same time.

▪ Sanitizers such as AddressSanitizer (aka ASan) will have their own malloc
implementations.

▪ Custom allocators that manage their own arenas/heaps/zones will avoid the
system libraries. For example, mimalloc in standard configuration will use only
mmap() and munmap().

▪ Restricted to libmalloc only. User can always call lower-level APIs such as
mach_vm_allocate(). Those can be intercepted as well.

▪ Tracking the real allocated size (e.g., result of
malloc_size()/malloc_usable_size()) is costly.

32

Sample API (based on libmalloc definitions)

typedef void(malloc_logger_t)

 (uint32_t type, uintptr_t arg1,
 uintptr_t arg2, uintptr_t arg3,
 uintptr_t result, uint32_t num_hot_frames_to_skip);

extern malloc_logger_t *malloc_logger;

typedef struct _malloc_stats_t {

...

} malloc_stats_t, *pmalloc_stats_t;

33

Temptation

▪ We’ll use as much futures, lambdas, and promises
as we can to implement the API.
▪ C++ 11/14/17/20/23

▪ Why? Because C++ now supports all kinds of cool
things. We want to use the latest standard
because it’s there.

34

Sample API (usage patterns)

int start_malloc_trace();
int stop_malloc_trace();

int reset_thread_malloc_stats();
int reset_global_malloc_stats();

int get_global_malloc_stats(malloc_stats_t *global_stats);
int get_thread_malloc_stats(malloc_stats_t *thread_stats);

▪ Custom classes that use RAII pattern on top of it to make the usage
easy.

▪ Hide everything from the consumer.

35

More complex scenarios

▪ If you can’t keep everything in memory, then you need to use some
form of storage.

▪ Storage (typically a disk) means opening multiple cans of worms.
▪ Shared (circular) queues in the memory.
▪ Concurrent access by reader and writer threads.
▪ Asynchronous and synchronous I/O decisions.
▪ Managing the data store (e.g., cleanup, compaction, limits).
▪ Data corruption.
▪ Packaging, compressing, transmitting, and decompressing the

data.

36

Final thoughts

▪ It has been some time since we’ve worked on this
problem—take everything that was said with a grain of salt.

▪ Ideally, the allocator should keep track of statistics
▪ Both jemalloc and TCMalloc expose some.
▪ Default allocators don’t share much.

▪ glibc: struct mallinfo mallinfo(void);
▪ glibc: struct mallinfo2 mallinfo2(void);

▪ Using custom memory allocators causes an “intercept race
condition.”

▪ Are TLS models in LLVM something that can be used?

37

Acknowledgements

▪ The only reason I am here is because of the
kindness of LLVM Foundation.

38

THANK YOU - ENGINEERS NEED YOUR
HELP!

Interested? Intrigued?
Disagree? Collaborate?
Have a beer? Go for a trail run?

▪gunnarku.github.io
▪g.kudrjavets@rug.nl

39

Everything will be fine

“A systems programmer will know what to do
when society breaks down, because the
systems programmer already lives in a world
without law.”

— James Mickens, The Night Watch, 2013

40

References

▪ Duffy, J., & Sutter, H. (2008). Concurrent Programming on Windows. Boston, MA:
Addison-Wesley Educational.

▪ Herlihy, M., & Shavit, N., (2020). The Art of Multiprocessor Programming (2nd ed.).
Burlington, MA, USA: Morgan Kaufmann Publishers.

▪ Kerrisk, M. (2010). The Linux Programming Interface. San Francisco, CA, USA: No
Starch Press.

▪ Levin, J. (2017). *OS internals: User space. White Plains, NY: USA: Technologeeks
Press.

▪ McKenney, P. E., (2014). Is Parallel Programming Hard, And, If So, What Can You Do
About It? Self-published.

▪ Singh, A. (2006). Mac OS X Internals. Boston, MA: Addison-Wesley Educational.

▪ Williams, A. (2019). C++ Concurrency in Action (2nd ed.). New York, NY, USA: Manning
Publications.

41

