
Prep
rin

t
What Warnings Do Engineers Really Fix?

The Compiler That Cried Wolf
Gunnar Kudrjavets

University of Groningen
9712 CP Groningen, Netherlands

g.kudrjavets@rug.nl

Aditya Kumar
Snap, Inc.

Santa Monica, CA 90405, USA
adityak@snap.com

Ayushi Rastogi
University of Groningen

9712 CP Groningen, Netherlands
a.rastogi@rug.nl

Abstract—Build logs from a variety of Continuous Integration
(CI) systems contain temporal data about the presence and
distribution of compiler warnings. Results from the analysis
and mining of that data will indicate what warnings engineers
find useful and fix, or continuously ignore. The findings will
include resolution times and resolution types for different warn-
ing categories. That data will help compiler developers adjust
the warning levels according to the ground truth, clarify the
diagnostic messages, and improve the non-actionable warnings.
The empirical findings will also help engineers to decide what
warnings are worth fixing and which ones are not.

I. BACKGROUND AND MOTIVATION

Compiler warnings that indicate potential problems in the
code are a byproduct of a daily “edit-compile-debug” develop-
ment cycle. If warnings are present, an engineer must decide
whether to fix, ignore, or suppress the warnings. Industry
practices for commercial and open-source projects range from
a zero-tolerance policy towards warnings [1], [2], [3] to stating
that fixing warnings introduces more defects [4].

Ignoring critical compiler warnings can cause defects to
propagate into a production environment. Those defects, in
turn, can trigger issues such as reduced availability of services,
memory corruption, and zero-day vulnerabilities. We need
empirical data to develop sound, evidence-based policies to
determine if and in what order to address compiler warnings.

Google’s experience with applying static analysis at a large
scale indicates that it is hard to motivate developers to fix
potential issues without a clear incentive [5]. In our industry
experience, we make concurring observations regarding pri-
oritizing fixing compiler warnings. Lack of evidence that can
provide the incentive makes it challenging to determine the
priority of this work. Outside of the warning level ranking
provided by the compiler, we are not aware of any other priori-
tization techniques to determine what warnings should be fixed
first. Our industry experience indicates that some warnings
are more beneficial than others. Benefit in this context means
that warnings detect serious defects, have less false positives,
and engineers trust and understand the diagnostic reports [6],
[7]. We anecdotally observe that the order in which engineers
fix the warnings does not always match the severity level a
compiler assigns to them. To determine the types of warnings
that engineers either continuously ignore, fix immediately, or
delay fixing, we propose that researchers mine the existing
build logs and investigate this topic further.

II. AVAILABILITY OF DATA

CI is a practice of continuously integrating code changes
into a shared code base [8]. The CI systems are widely used in
industry by companies such as Google [9] and Meta [10]. The
adoption of CI systems for open-source software is growing
as well [11]. Several popular open-source projects such as
FreeBSD [12] or Mozilla [13] have embraced the CI systems
as the primary code delivery and validation vehicle.

The CI process results in a large number of build artifacts.
In 2017, Google executed approximately 800,000 builds on a
daily basis [9]. The build logs contain compiler output that
includes the list of warnings that were generated during the
compilation process. Typically, each CI build tracks also what
new code changes are included in that build. Popular dynamic
and static analysis frameworks such as CodeChecker enable
inspecting the differences between two builds [14]. In our
industry experience, the resulting build logs persist anywhere
from weeks to months. As a result, a variety of data from both
industry and open-source is available for analysis.

III. FUTURE RESEARCH TOPICS

The repository of CI logs can help researchers find answers
to several questions such as:

1) What warnings have the longest and shortest lifespan?
Does the order of fixing those warnings correspond with
compiler’s classification scheme and suggestions?

2) Are warnings from some compilers fixed faster than
others (e.g., Clang versus GCC)? What about different
programming languages or static analysis tools?

3) Is there a relationship between various characteristics
such as abstraction level, amount of code churn, pro-
gramming language, or seniority of engineers and how
fast the warnings are fixed?

4) What is the temporal change direction in the ratio of
warnings to source lines of code? Does the ratio depend
on different project characteristics?

Answering these questions will help engineers prioritize
fixing compiler warnings, suppress the ineffective warnings,
and provide feedback to compiler developers. Combing the
data mined from CI logs with the information from the defect
tracking database and source control system will provide even
stronger evidence to substantiate any claims.



Prep
rin

t
REFERENCES

[1] G. J. Holzmann, “The power of 10: rules for developing safety-critical
code,” Computer, vol. 39, no. 6, pp. 95–97, Jun. 2006. [Online].
Available: https://doi.org/10.1109/MC.2006.212

[2] N. Nethercote. (2017, Jul.) How we made compiler
warnings fatal in Firefox. Mozilla Foundation. [Online]. Avail-
able: https://blog.mozilla.org/nnethercote/2017/07/05/how-we-made-
compiler-warnings-fatal-in-firefox/

[3] The Apache Software Foundation. (2021, Jun.) Writing warning-
free code—Apache OpenOffice Wiki. [Online]. Available: https:
//wiki.openoffice.org/wiki/Writing_warning-free_code

[4] SQLite. (2022, May) How SQLite Is Tested. SQLite Consortium.
[Online]. Available: https://www.sqlite.org/testing.html#staticanalysis

[5] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan,
“Lessons from building static analysis tools at Google,” Commun.
ACM, vol. 61, no. 4, pp. 58–66, mar 2018. [Online]. Available:
https://doi.org/10.1145/3188720

[6] T. Barik, J. Smith, K. Lubick, E. Holmes, J. Feng, E. Murphy-Hill,
and C. Parnin, “Do Developers Read Compiler Error Messages?”
in Proceedings of the 39th International Conference on Software
Engineering, ser. ICSE ’17. IEEE Press, 2017, pp. 575–585. [Online].
Available: https://doi.org/10.1109/ICSE.2017.59

[7] B. A. Becker, P. Denny, R. Pettit, D. Bouchard, D. J. Bouvier,
B. Harrington, A. Kamil, A. Karkare, C. McDonald, P.-M. Osera,
J. L. Pearce, and J. Prather, “Compiler Error Messages Considered
Unhelpful: The Landscape of Text-Based Programming Error Message
Research,” in Proceedings of the Working Group Reports on Innovation
and Technology in Computer Science Education, ser. ITiCSE-WGR ’19.
New York, NY, USA: Association for Computing Machinery, 2019, pp.
177–210. [Online]. Available: https://doi.org/10.1145/3344429.3372508

[8] M. Fowler. (2006, May) Continuous Integration. [Online]. Available:
https://martinfowler.com/articles/continuousIntegration.html

[9] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,
and J. Micco, “Taming Google-scale continuous testing,” in Proceedings
of the 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP), ser.
ICSE-SEIP ’17. IEEE Press, 2017, pp. 233–242. [Online]. Available:
https://doi.org/10.1109/ICSE-SEIP.2017.16

[10] D. Distefano, M. FÃChndrich, F. Logozzo, and P. W. O’Hearn,
“Scaling static analyses at Facebook,” Communications of the
ACM, vol. 62, no. 8, pp. 62–70, Jul. 2019. [Online]. Available:
https://dl.acm.org/doi/10.1145/3338112

[11] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE 2016. New York, NY,
USA: Association for Computing Machinery, 2016, pp. 426–437.
[Online]. Available: https://doi.org/10.1145/2970276.2970358

[12] L.-W. Hsu, “Continuous Integration of The FreeBSD
Project,” in Proceedings of AsiaBSDCon 2017. Tokyo,
Japan: Tokyo University of Science, Mar. 2017. [Online].
Available: https://papers.freebsd.org/2017/asiabsdcon/lwhsu-
Continuous_Integration_of_the_FreeBSD_Project.files/lwhsu-
Continuous_Integration_of_the_FreeBSD_Project-paper.pdf

[13] J. Lampel, S. Just, S. Apel, and A. Zeller, “When life gives you
oranges: detecting and diagnosing intermittent job failures at Mozilla,”
in Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2021. New York, NY, USA: Association
for Computing Machinery, 2021, pp. 1381–1392. [Online]. Available:
https://doi.org/10.1145/3468264.3473931

[14] G. Márton and D. Krupp. (2020, Jun.) Tool Talk: CodeChecker (SOAP
2020—9th ACM SIGPLAN International Workshop on the State Of
the Art in Program Analysis (SOAP) 2020)—PLDI 2020. [Online].
Available: https://pldi20.sigplan.org/details/SOAP-2020-papers/13/Tool-
Talk-CodeChecker


