The Devil Is in the Command Line: Associating the Compiler
Flags With the Binary and Build Metadata

Gunnar Kudrjavets
University of Groningen
Groningen, Netherlands

g.kudrjavets@rug.nl

Jeff Thomas
Meta Platforms, Inc.
Menlo Park, CA, USA
jeffdthomas@meta.com

ABSTRACT

Engineers build large software systems for multiple architectures,
operating systems, and configurations. A set of inconsistent or
missing compiler flags generates code that catastrophically impacts
the system’s behavior. In the authors’ industry experience, defects
caused by an undesired combination of compiler flags are common
in nontrivial software projects. We are unaware of any build and
CI/CD systems that track how the compiler produces a specific
binary in a structured manner. We postulate that a queryable data-
base of how the compiler compiled and linked the software system
will help to detect defects earlier and reduce the debugging time.

CCS CONCEPTS

- Software and its engineering — Software defect analysis; Soft-
ware design trade-offs; Empirical software validation.

KEYWORDS
Defect prevention, compiler flag, Clang, GCC, MSVC

ACM Reference Format:

Gunnar Kudrjavets, Aditya Kumar, Jeff Thomas, and Ayushi Rastogi. 2023.
The Devil Is in the Command Line: Associating the Compiler Flags With the
Binary and Build Metadata. In Proceedings of 46th International Conference
on Software Engineering (ICSE 2024). ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION AND BACKGROUND

Compilers are software systems that translate programs “into a form
in which it can be executed by a computer” [1]. A C or C++ compiler
such as Clang, GCC, or MSVC supports hundreds of command-line
arguments (flags, options, switches). The compiler flags instruct
compiler on different aspects of code generation, types of error
detection, compliance to a specific version of the programming
language standard, or target platform-specific nuances. An incorrect

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE 2024, April 2024, Lisbon, Portugal

© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Aditya Kumar
Google
Mountain View, CA, USA
appujee@google.com

Ayushi Rastogi
University of Groningen
Groningen, Netherlands

arastogi@rug.nl

combination of compiler flags can have disastrous consequences for
the resulting software system. For example, accidentally turning off
the compiler flag to enable checks for buffer security to catch stack
overflows (e.g., omitting the /GS option in MSVC) can expose a
zero-day vulnerability [11, 12].

Engineers can compile the same version of a software system to
target different platforms and intents, such as debugging, profiling,
or an official release. Typical implicit variables that influence the
final set of compiler flags are the host operating system where
the compiler executes, the target operating system where the code
will run, the compiler version, dependencies available on the host
system, and the desired build type [15, 21].

Both commercial and open-source software utilizes a variety of
build systems. The build system determines the conditions under
which a compiler runs and what combination of compiler flags it
passes to the compiler. Some of the most popular build systems
are: Ant [22], Bazel [7], Buck2 [17], CMake [13], GNU Make [6],
Ninja [16], and NMAKE [3]. Each build system has different means
of specifying the dependency graph, defining the rules for build
actions, and how it initializes the default set of compiler flags.

Listing 1 displays a simple conditional statement that modifies
the set of dependent libraries based on the host operating system.!

Listing 1: Excerpt from the Redis Makefile.

Linux ARM32 needs -latomic at linking time

ifneq (,$(findstring armv,$(uname_M)))
FINAL_LIBS+=-1latomic

endif

In Listing 2, we see a more complex conditional logic.? The build
system disables the usage of a critical dependency (the jemalloc
memory allocator) based on what the host and target platforms are.

Listing 2: Excerpt from the RocksDB Makefile.

ifeq ($(PLATFORM), OS_MACOSX)
ifeq ($(ARCHFLAG), -arch arm64)
ifneq ($(MACHINE), arm64)

DISABLE_JEMALLOC=1

PLATFORM_CCFLAGS := $(filter-out -march=native, ...)
PLATFORM_CXXFLAGS := $(filter-out -march=native, ...)
endif
endif
endif

!https://github.com/redis/redis/blob/unstable/src/Makefile
Zhttps://github.com/facebook/rocksdb/blob/main/Makefile

https://orcid.org/0000-0003-3730-4692
https://orcid.org/0000-0001-6312-2898
https://orcid.org/0000-0002-8026-9637
https://orcid.org/0000-0002-0939-6887
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/redis/redis/blob/unstable/src/Makefile
https://github.com/facebook/rocksdb/blob/main/Makefile

ICSE 2024, April 2024, Lisbon, Portugal

By design, a modern build system lets users define build in-
structions at a higher abstraction level than the formal compiler
command lines. In Listing 3, we can see how to define a C++ exe-
cutable foo in Buck2 [17]. The executable foo contains one source
code file and one header file. It also depends on another C or C++
library called bar.

Listing 3: Sample Buck2 build definition for a C++ binary.

cxx_binary(

name = 'foo',
srcs = ['foo.cxx', 1,
headers = ['foo.hxx', 1,

deps = [':bar', 1,
)

For an engineer to understand the details about how exactly the
compiler generates code, they need to either intercept the compiler
execution or inspect the resulting log files with the final command
line that the compiler interprets.

2 INDUSTRY CHALLENGES

Our primary motivation for this paper comes from observing, de-
bugging, and fixing the repeating patterns of defects. The root
cause for these defects are the incorrect assumptions about how
a compiler generated binaries for a particular software system. A
possible negative interaction between compiler flags is a known
problem [19]. In our industry experience, the defects caused by
incorrect (extraneous, missing, unsuitable) compiler flags have high
consequences, are hard to detect and stealthy, and are time-consuming
to investigate and replicate.

The primary categories of problems that we have encountered
during the last two decades in the industry are as follows:

(1) The differences between engineers’ development envi-
ronment and the official build servers. The official build
servers can run on a different operating system, use a differ-
ent compiler version, have different environment variables
set, or use a different set of preprocessor directives:

(2) A lack of formal alerting mechanism when the com-
piler flags change. Any seemingly unrelated commit can
influence how the compiler generates the code or what are
the application’s dependencies. The resulting compiler flags
can change because of confounding variables, such as envi-
ronment settings, compiler configuration files, or corporate
device management policies.

(3) A lack of tools to detect anomalies in the resulting

build. A compiler can generate a subset of a software sys-

tem differently than the rest. Sample issues include (a) a

release build that targets the production environment in-

cludes a component with debug tracing enabled, (b) global
optimization options do not propagate correctly to all the
dependencies, and (c) a consumer that uses different versions
of the same dependency in parallel (some things are worse

than the infamous “DLL hell” [4]).

Inability to easily detect syntactic mistakes. An engineer

may mistype a CXFLAGS macro in the makefile instead of

CXXFLAGS (extra flags passed to a C++ compiler). Most build

systems lack the means to detect and notify engineers of

these mistakes.

(4

=

1,2,3,and 4

(5) Third-party software components rarely provide the
build configuration used to generate the binaries. For
example, a dependency can turn off the support for excep-
tion handling (e.g., specifying the -fno-exceptions flag in
GCQ). If the consumer assumes that it can catch exceptions,
it invalidates the application’s ability to handle errors.

2.1 Non-deterministic builds

Popular C++ compilers can generate code in a non-deterministic
manner. Recompiling a translation unit using the same build con-
figuration can result in a different binary [9, 10]. Similarly, modern
build systems process the build graph efficiently by enforcing di-
rected acyclic graph-like build dependencies [7, 17]. As a result, the
order of object files listed during the linking stage will depend on
which translation unit the compiler built first. That, in turn, can
cause non-deterministic behavior [5].

Tracking the usage of compiler flags will decrease a subset
of problems related to the reproducibility of the build environ-
ment [14]. It will help with debugging and early detection of complex
defects that influence the behavior of an entire software system.

3 'INDUSTRY NEEDS

While the “[b]uild systems are awesome, terrifying—and unloved,”
they are something that each engineer uses daily [18]. Modern
build tools such as Bazel [7] and Buck2 [17], have made signifi-
cant progress towards the build hermeticity [8] and making builds
reproducible. However, developing a fully self-contained and de-
terministic build system has been a complex problem, even for a
company like Microsoft [15, 20, 21]. Popular utilities such as GNU
Autotools are not hermetic by design and rely on the dependencies
from the current execution environment [2].

Engineers need to have the means to understand the evolution of
the final set of compiler flags for each binary throughout the project’s
history for each configuration. Currently, the “state-of-the-art so-
lution” involves engineers inspecting the build logs as a text file
and using tools such as diff to compare the results between two
builds. If the build logs are not systematically archived, engineers
must rebuild the entire system to understand the final set of com-
piler flags. Building multiple product versions to isolate a problem
can take days or longer for complex software systems, such as an
operating system.

4 POTENTIAL RESEARCH DIRECTIONS

An obvious solution is to parse the build logs, extract the necessary
information, store it in the metadata associated with each resulting
build, and provide a query interface for engineers to solve problems
similar to the ones we enumerate in Section 2. Most industrial CI/CD
systems enable associating an individual build with the test case
results, the state of the source code repository when the compiler
generated the binaries, and other related metadata. Adding the
information about compiler flags is just another dimension of the
metadata.

Another option is storing the compiler flags the build system
uses inside each binary. For example, an ELF file format supports
the . comment and . note sections in the final binary [23]. However,
that approach will require making changes to each used compiler.

The Devil Is in the Command Line: Associating the Compiler Flags With the Binary and Build Metadata

REFERENCES

(1]

[2

—

[10]

[11]

Alfred V. Aho, Jeffrey D. Ullman, Ravi Sethi, and Monica S. Lam. 2007. Compilers:
Principles, Techniques, and Tools (2nd ed.). Addison Wesley, Boston, MA, USA.
John Calcote. 2020. Autotools: A Practitioner’s Guide to GNU Autoconf, Automake,
and Libtool (2nd ed.). No Starch Press, San Francisco, CA, USA.

Microsoft Corporation. 2021. NMAKE Reference. Retrieved October 5, 2023 from
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference
Stephanie Dick and Daniel Volmar. 2018. DLL Hell: Software Dependencies,
Failure, and the Maintenance of Microsoft Windows. IEEE Annals of the History of
Computing 40, 4 (Oct. 2018), 28-51. https://doi.org/10.1109/MAHC.2018.2877913
Free Software Foundation, Inc. 2009. Ld(1): GNU linker—Linux man page. Re-
trieved October 5, 2023 from https://linux.die.net/man/1/1d

Free Software Foundation, Inc. 2023. Make—GNU Project—Free Software Founda-
tion. Retrieved October 5, 2023 from https://www.gnu.org/software/make/
Google. 2023. Bazel—A Fast, Scalable, Multi-Language and Extensible Build System.
Retrieved October 5, 2023 from https://bazel.build/

Google. 2023. Hermeticity. Retrieved October 5, 2023 from https://bazel.build/
basics/hermeticity

Mandeep Singh Grang. 2017. Non-determinism in LLVM Code Generation.
Talk presented at the 11th meeting of LLVM developers and users. San Jose,
CA, USA. Retrieved October 5, 2023 from https://github.com/mgrang/non-
determinism/blob/master/poster__nondeterminism_in_llvm_code_generation_
_llvmdevmeet_2017.pdf

Mandeep Singh Grang. 2018. Fighting Non-determinism in C++ Compilers.
Talk presented at the CppCon 2018. Bellevue, WA, USA. Retrieved October
5, 2023 from https://github.com/CppCon/CppCon2018/blob/master/Posters/
fighting_nondeterminism_in_cpp_compilers/fighting nondeterminism_in_
cpp_compilers__mandeep_singh_grang__cppcon_2018.pdf

Michael Howard and David Leblanc. 2002. Writing Secure Code (2nd ed.). Mi-
crosoft Press, Redmond, WA, USA.

[12

e
N

[20

[21

(23]

ICSE 2024, April 2024, Lisbon, Portugal

Michael Howard and Steve Lipner. 2006. The Security Development Lifecycle.
Microsoft Press, Redmond, WA, USA.

Kitware, Inc. 2023. CMake. Retrieved October 5, 2023 from https://cmake.org/
Chris Lamb and Stefano Zacchiroli. 2022. Reproducible Builds: Increasing the
Integrity of Software Supply Chains. IEEE Software 39, 2 (2022), 62-70. https:
//doi.org/10.1109/MS.2021.3073045

Vincent Maraia. 2005. The Build Master: Microsoft’s Software Configuration Man-
agement Best Practices. Addison-Wesley Professional, Reading, MA, USA.

Evan Martin. 2022. Ninja, a Small Build System With a Focus on Speed. Retrieved
October 5, 2023 from https://ninja-build.org/

Meta Platforms, Inc. 2023. Buck2. Retrieved October 5, 2023 from https://buck2.
build/

Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. 2018. Build Systems a
La Carte. Proceedings of the ACM on Programming Languages 2, ICFP, Article 79
(July 2018), 29 pages. https://doi.org/10.1145/3236774

R.P.J. Pinkers, PMW. Knijnenburg, M. Haneda, and H.A.G. Wijshoff. 2004. Sta-
tistical selection of compiler options. In The IEEE Computer Society’s 12th Annual
International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems, 2004. (MASCOTS 2004). Proceedings. 494-501.
https://doi.org/10.1109/MASCOT.2004.1348305

Wolfram Schulte. 2016. Changing Microsoft’s Build: Revolution or Evolution. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering (Singapore) (ASE ’16). Association for Computing Machinery, New
York, NY, USA, 2. https://doi.org/10.1145/2970276.2985779

Peter Smith. 2011. Software Build Systems: Principles and Experience (1st ed.).
Addison-Wesley Professional, Upper Saddle River, NJ, USA.

The Apache Software Foundation. 2022. Apache Ant. Retrieved October 5, 2023
from https://ant.apache.org/

TIS Committee. 1995. Tool Interface Standard (TIS) Executable and Linking
Format (ELF) Specification. Retrieved October 5, 2023 from https://refspecs.
linuxfoundation.org/elf/elf. pdf

https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference
https://doi.org/10.1109/MAHC.2018.2877913
https://linux.die.net/man/1/ld
https://www.gnu.org/software/make/
https://bazel.build/
https://bazel.build/basics/hermeticity
https://bazel.build/basics/hermeticity
https://github.com/mgrang/non-determinism/blob/master/poster__nondeterminism_in_llvm_code_generation__llvmdevmeet_2017.pdf
https://github.com/mgrang/non-determinism/blob/master/poster__nondeterminism_in_llvm_code_generation__llvmdevmeet_2017.pdf
https://github.com/mgrang/non-determinism/blob/master/poster__nondeterminism_in_llvm_code_generation__llvmdevmeet_2017.pdf
https://github.com/CppCon/CppCon2018/blob/master/Posters/fighting_nondeterminism_in_cpp_compilers/fighting_nondeterminism_in_cpp_compilers__mandeep_singh_grang__cppcon_2018.pdf
https://github.com/CppCon/CppCon2018/blob/master/Posters/fighting_nondeterminism_in_cpp_compilers/fighting_nondeterminism_in_cpp_compilers__mandeep_singh_grang__cppcon_2018.pdf
https://github.com/CppCon/CppCon2018/blob/master/Posters/fighting_nondeterminism_in_cpp_compilers/fighting_nondeterminism_in_cpp_compilers__mandeep_singh_grang__cppcon_2018.pdf
https://cmake.org/
https://doi.org/10.1109/MS.2021.3073045
https://doi.org/10.1109/MS.2021.3073045
https://ninja-build.org/
https://buck2.build/
https://buck2.build/
https://doi.org/10.1145/3236774
https://doi.org/10.1109/MASCOT.2004.1348305
https://doi.org/10.1145/2970276.2985779
https://ant.apache.org/
https://refspecs.linuxfoundation.org/elf/elf.pdf
https://refspecs.linuxfoundation.org/elf/elf.pdf

	Abstract
	1 Introduction and background
	2 Industry challenges
	2.1 Non-deterministic builds

	3 Industry needs
	4 Potential research directions
	References

