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Abstract
Modern compilers provide improved diagnostics, performance, and
security. The industry lacks the data and tools to estimate the cost
to upgrade a compiler toolchain for complex projects. A knowledge
base mined from defect databases, mailing lists, experience reports,
commits, and grey literature will improve the planning process.
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1 Background and motivation
Software projects need to periodically upgrade compiler toolchains
to make use of (a) improvements in programming languages (en-
hanced error detection, new features, library updates), (b) per-
formance benefits (code generation, CPU-specific optimizations),
and (c) meet the requirements from the dependencies already up-
graded [10].

Estimating the cost of modernizing a specific project is complex
because compiler upgrades are a multilayered problem. Compilers
do not show all compilation errors at once, syntax errors must be
fixed before linker errors, and code generation performance can
only be measured after the previous steps have succeeded.

Formultimillion line projects, each phase can takeweeks, months,
or years of engineering effort. There is no clear way to calculate the
cost of upgrading a project 𝑃 from a compiler toolchain version 𝑁

to version 𝑁 +𝑀 . The state-of-the-art estimation technique looks at
the collection of release notes and similar past experiences, resulting
in a guesstimate. Another problematic factor is the highly repetitive
and unattractive nature of this work. Empirically, engineers prefer
to work on new features versus fix linker errors.

As a result, complex software projects, such as operating system
kernels, require maintaining support for compilers that are a decade
old. For example, the Linux kernel changed a requiredminimal GNU
Compiler Collection (GCC) version only in April 2025 from GCC
5.1.0 (released in April 2015) to GCC 8.1.0 (released in May 2018) [1].
Although newer compiler versions can still be used to build the
kernel, this constraint means that the kernel code cannot rely on
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modern language features or optimizations introduced after the
minimal GCC version. That limits the ability of kernel engineers to
use newer C standards or compiler-assisted safety checks.

2 Availability of data
The most popular open-source compiler toolchains are Clang and
GCC. Clang has a six-month release cycle [6]. The GCC releases
follow an annual cadence [3]. A list of notable changes, porting
guidelines, and release notes accompany each release of Clang and
GCC. Developers and users also share relevant information in the
Discord groups, mailing lists, and Bugzilla defect databases. The
history of changes in source code is tracked in Git or Subversion.
In addition, the compiler test suites expose the defects that affect a
specific compiler version [2].

3 Industry’s needs
The high velocity of compiler updates is an important topic for
warehouse-scale applications that serve billions of users. Empirical
findings from Google, Meta and Uber show the importance of using
the latest compiler toolchains to improve performance (e.g., apply-
ing link-time or profile-guided optimizations), reduce operating
costs, and decrease energy consumption [4, 5, 8, 11].

To efficiently plan a compiler toolchain upgrade, engineers need
to answer the following questions.

(1) What are the common problems encountered when upgrad-
ing software from the toolchain version 𝑁 to version 𝑁 +𝑀?
For example, migration from GCC 14.3.0 to GCC 15.2.0? A
similar but more complex scenario is to migrate to a different
toolchain altogether or to support multiple toolchains.

(2) How many resources (computing power, people, time) are
needed to be allocated for upgrading a particular project?
Are the estimates from the past reliable, given the AI-induced
increase in the code velocity during the past 1–2 years?

(3) In the spirit of “using AI for everything,” can we use AI
agents and LLMs for toolchain upgrades? Given the growing
corpus of research on automated code migration, can we
reduce this problem to a subset of code migration [7, 9, 12]?

A small number of organizations with access to the necessary
computing power have the means to use LLMs to assist with com-
piler updates. However, that approach does not solve the problem
for numerous open-source software projects that are mainly main-
tained by volunteers and supported by donations.

We postulate that the collection of data sources enumerated
in Section 2 contains an unstructured data set that, when catego-
rized and publicized, can be used to (a) help engineers find the
answers faster, (b) train models targeted for solving similar prob-
lems, and (c) raise awareness of the developer time and labor costs
associated with toolchain upgrades.
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