Can Data Mining Help to Survive the Annual Compiler Upgrade?

Gunnar Kudrjavets Aditya Kumar Piotr Przymus
Amazon Web Services* Google Nicolaus Copernicus University
Seattle, WA, USA Mountain View, CA, USA Torun, Poland
gunnarku@amazon.com appujee@google.com piotr.przymus@mat.umk.pl

Abstract

Modern compilers provide improved diagnostics, performance, and
security. The industry lacks the data and tools to estimate the cost
to upgrade a compiler toolchain for complex projects. A knowledge
base mined from defect databases, mailing lists, experience reports,
commits, and grey literature will improve the planning process.

ACM Reference Format:

Gunnar Kudrjavets, Aditya Kumar, and Piotr Przymus. 2026. Can Data
Mining Help to Survive the Annual Compiler Upgrade?. In . ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Background and motivation

Software projects need to periodically upgrade compiler toolchains
to make use of (a) improvements in programming languages (en-
hanced error detection, new features, library updates), (b) per-
formance benefits (code generation, CPU-specific optimizations),
and (c) meet the requirements from the dependencies already up-
graded [10].

Estimating the cost of modernizing a specific project is complex
because compiler upgrades are a multilayered problem. Compilers
do not show all compilation errors at once, syntax errors must be
fixed before linker errors, and code generation performance can
only be measured after the previous steps have succeeded.

For multimillion line projects, each phase can take weeks, months,
or years of engineering effort. There is no clear way to calculate the
cost of upgrading a project P from a compiler toolchain version N
to version N + M. The state-of-the-art estimation technique looks at
the collection of release notes and similar past experiences, resulting
in a guesstimate. Another problematic factor is the highly repetitive
and unattractive nature of this ' work. Empirically, engineers prefer
to work on new features versus fix linker errors.

As a result, complex software projects, such as operating system
kernels, require maintaining support for compilers that are a decade
old. For example, the Linux kernel changed a required minimal GNU
Compiler Collection (GCC) version only in April 2025 from GCC
5.1.0 (released in April 2015) to GCC 8.1.0 (released in May 2018) [1].
Although newer compiler versions can still be used to build the
kernel, this constraint means that the kernel code cannot rely on

*Conducting research is not related to Gunnar Kudrjavets’ role at Amazon Web Ser-
vices, Inc. All opinions and statements in this paper are the author’s own.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference’17, Washington, DC, USA

© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-X/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

modern language features or optimizations introduced after the
minimal GCC version. That limits the ability of kernel engineers to
use newer C standards or compiler-assisted safety checks.

2 Availability of data

The most popular open-source compiler toolchains are Clang and
GCC. Clang has a six-month release cycle [6]. The GCC releases
follow an annual cadence [3]. A list of notable changes, porting
guidelines, and release notes accompany each release of Clang and
GCC. Developers and users also share relevant information in the
Discord groups, mailing lists, and Bugzilla defect databases. The
history of changes in source code is tracked in Git or Subversion.
In addition, the compiler test suites expose the defects that affect a
specific compiler version [2].

3 Industry’s needs

The high velocity of compiler updates is an important topic for
warehouse-scale applications that serve billions of users. Empirical
findings from Google, Meta and Uber show the importance of using
the latest compiler toolchains to improve performance (e.g., apply-
ing link-time or profile-guided optimizations), reduce operating
costs, and decrease energy consumption [4, 5, 8, 11].

To efficiently plan a compiler toolchain upgrade, engineers need
to answer the following questions.

(1) What are the common problems encountered when upgrad-
ing software from the toolchain version N to version N + M?
For example, migration from GCC 14.3.0 to GCC 15.2.0? A
similar but more complex scenario is to migrate to a different
toolchain altogether or to support multiple toolchains.

(2) How many resources (computing power, people, time) are
needed to be allocated for upgrading a particular project?
Are the estimates from the past reliable, given the Al-induced
increase in the code velocity during the past 1-2 years?

(3) In the spirit of “using Al for everything,” can we use Al
agents and LLMs for toolchain upgrades? Given the growing
corpus of research on automated code migration, can we
reduce this problem to a subset of code migration [7, 9, 12]?

A small number of organizations with access to the necessary
computing power have the means to use LLMs to assist with com-
piler updates. However, that approach does not solve the problem
for numerous open-source software projects that are mainly main-
tained by volunteers and supported by donations.

We postulate that the collection of data sources enumerated
in Section 2 contains an unstructured data set that, when catego-
rized and publicized, can be used to (a) help engineers find the
answers faster, (b) train models targeted for solving similar prob-
lems, and (c) raise awareness of the developer time and labor costs
associated with toolchain upgrades.


https://orcid.org/0000-0003-3730-4692
https://orcid.org/0000-0001-6312-2898
https://orcid.org/0000-0001-9548-2388
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

References

(1]

Arnd Bergmann. 2025. kbuild: require gcc-8 and binutils-2.30. Retrieved November
14, 2025 from https://github.com/torvalds/linux/commit/118c40b7

[2] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan

[3

(4]

Hao, and Lu Zhang. 2020. A Survey of Compiler Testing. ACM Comput. Surv. 53,
1, Article 4 (Feb. 2020), 36 pages. doi:10.1145/3363562
Free Software Foundation, Inc. 2025. GCC Releases.
2025 from https://gcc.gnu.org/releases.html

Wenlei He, Hongtao Yu, Lei Wang, and Taewook Oh. 2024. Revamping Sampling-
Based PGO with Context-Sensitivity and Pseudo-instrumentation. In Proceed-
ings of the 2024 IEEE/ACM International Symposium on Code Generation and
Optimization (Edinburgh, United Kingdom) (CGO °24). IEEE Press, 322-333.
d0i:10.1109/CG057630.2024.10444807

Kyungwoo Lee, Ellis Hoag, and Nikolai Tillmann. 2022. Efficient profile-guided
size optimization for native mobile applications. In Proceedings of the 31st ACM
SIGPLAN International Conference on Compiler Construction (Seoul, South Korea)
(CC 2022). Association for Computing Machinery, New York, NY, USA, 243-253.
doi:10.1145/3497776.3517764

LLVM Project. 2025. LLVM Download Page. Retrieved November 14, 2025 from
https://releases.llvm.org/

Behrooz Omidvar Tehrani, Ishaani M, and Anmol Anubhai. 2024. Evaluating
Human-AI Partnership for LLM-based Code Migration. In Extended Abstracts of
the CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA)
(CHI EA °24). Association for Computing Machinery, New York, NY, USA, Article
133, 8 pages. d0i:10.1145/3613905.3650896

Retrieved November 14,

1,2,and 3

[8] Han Shen, Krzysztof Pszeniczny, Rahman Lavaee, Snehasish Kumar, Sriraman

[

[10

[11

[12

]

Tallam, and Xinliang David Li. 2023. Propeller: A Profile Guided, Relinking
Optimizer for Warehouse-Scale Applications. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). Association
for Computing Machinery, New York, NY, USA, 617-631. doi:10.1145/3575693.
3575727

Ty Smith. 2025. Large Scale Changes with AI-Migrating millions of lines of Java
to Kotlin at Uber. Uber Technologies, Inc. Retrieved November 14, 2025 from
https://www.youtube.com/watch?v=K2PN03AepC0

Jialiang Tan, Shuyin Jiao, Milind Chabbi, and Xu Liu. 2020. What every scientific
programmer should know about compiler optimizations?. In Proceedings of the
34th ACM International Conference on Supercomputing (Barcelona, Spain) (ICS °20).
Association for Computing Machinery, New York, NY, USA, Article 42, 12 pages.
doi:10.1145/3392717.3392754

Chris Zhang, Yufan Xu, Milind Chabbi, and Shauvik Roy Choudhary. 2025. Au-
tomating Efficiency of Go programs with Profile-Guided Optimizations. Uber
Technologies, Inc. Retrieved November 14, 2025 from https://www.uber.com/
blog/automating-efficiency- of-go- programs-with-pgo/

Celal Ziftci, Stoyan Nikolov, Anna Sjévall, Bo Kim, Daniele Codecasa, and Max
Kim. 2025. Migrating Code At Scale With LLMs At Google. In Proceedings of the
33rd ACM International Conference on the Foundations of Software Engineering
(Clarion Hotel Trondheim, Trondheim, Norway) (FSE Companion "25). Association
for Computing Machinery, New York, NY, USA, 162-173. doi:10.1145/3696630.
3728542


https://github.com/torvalds/linux/commit/118c40b7
https://doi.org/10.1145/3363562
https://gcc.gnu.org/releases.html
https://doi.org/10.1109/CGO57630.2024.10444807
https://doi.org/10.1145/3497776.3517764
https://releases.llvm.org/
https://doi.org/10.1145/3613905.3650896
https://doi.org/10.1145/3575693.3575727
https://doi.org/10.1145/3575693.3575727
https://www.youtube.com/watch?v=K2PN03AepC0
https://doi.org/10.1145/3392717.3392754
https://www.uber.com/blog/automating-efficiency-of-go-programs-with-pgo/
https://www.uber.com/blog/automating-efficiency-of-go-programs-with-pgo/
https://doi.org/10.1145/3696630.3728542
https://doi.org/10.1145/3696630.3728542

	Abstract
	1 Background and motivation
	2 Availability of data
	3 Industry's needs
	References

